Overview of Eurachem Guide on Measurement Uncertainty Arising from Sampling

Statistical model for *Empirical* estimation of uncertainty - One Sampling Target

 $x = X_{true} + \varepsilon_{sampling} + \varepsilon_{analytical}$

x = **measured** value of the analyte concentration in one sampling target

 X_{true} = true value of the analyte concentration in the sampling target

 $\mathcal{E}_{sampling} + \mathcal{E}_{analytical}$ = effects on measured concentration from sampling and analysis

Variance (standard deviation squared) of measurement value = σ_{meas}^2

 $\sigma_{meas}^2 = \sigma_{sampling}^2 + \sigma_{analytical}^2$

 $\sigma_{sampling}^2$ is the between-sample variance on one target (largely due to analyte heterogeneity) $\sigma_{analytical}^2$ is the between-analysis variance on one sample (as Repeatability)

For estimates of variance, we have:

 $s_{meas}^2 = s_{sampling}^2 + s_{analytical}^2$

UNIVERSITY Of Sussex

Estimation of MU (including UfS) Using Duplicate Method – Full Balanced Design	
Sampling	10% of targets in whole survey
target	\rightarrow between-target variance
Sample 1 Sample 2	between-sample variance
Analysis 1 Analysis 2 Analysis 1 Analysis 2	between-analysis variance
S1A1 S1A2 S2A1 S2A2	
 Usually uses this full balanced experimental design 	
 Sampling Target = Portion of material, at a particular time, that the sample is intended to represent 	
 Only requires one 'sampler' (or measurement scientist) Can be improved using multiple 'samplers' - using SPT results (see later slide, and UfS Guide) 	
 Explain Duplicate Method for Case Studies – followed by ANOVA Applicable to both <i>ex situ</i> and <i>in situ</i> measurement methods 	

Estimate of Uncertainty using SPT - including Between-Sampler Bias - Example using Sampling PT for moisture in butter^{*}

Conclusions

- Eurachem UfS Guide explains importance of UfS (& MU), and how to estimate it
- Including sampling within the measurement process:
 - Is essential for making reliable estimates of MU (including UfS)
 - E.g. For Compliance Decisions: e.g. are concentration levels above from regulatory limits?
 - Conforms to ISO/IEC 17025:2017
 - Being able to judge FFP, and hence validate the whole measurement process
 - Hence rigorous Validation of the whole Measurement Process (Including Sampling)
 Upcoming Supplementary Guidance on VaMPIS
- UfS (and hence MU) can be estimated with Duplicate Method (most practical)
 - Applicable to any sampling medium: soil, sediment, herbage, waters, gases etc.
 - Also applicable to *in situ* measurements (such as PXRF) (*Talk 3*)
 - Sampling PT (or CT) results can be used to also include between-sampler bias within MU
- Questions?

University of Sussex