Uncertainty estimation for *in situ* measurement procedures, including the sampling component

Prof. Michael H Ramsey

Chair of Eurachem UfS Working Group School of Life Sciences, University of Sussex, Brighton, UK m.h.ramsey@sussex.ac.uk

ISS Workshop on UfS 9-10th March 2023, Rome 30 minutes + discussion

Overview

- What is an *in situ* measurement method?
- Why is Measurement Uncertainty (MU) important?
- Advantages/Disadvantages of *in situ* measurement methods¹
- Estimation of MU for *in situ* measurements + Case Study
- Judging Fitness-for-Purpose (FFP) of *in situ* measurements
 - hence Validation of Measurement Procedures (Including Sampling)
 - For two different purposes
 - 1. Compliance with regulation
 - 2. Geochemical Mapping
- Conclusions

Disadvantages of *in situ* measurements

- In situ measurements often have larger uncertainty (MU)
 - Due partially to heterogeneity of analyte concentration (not mixed)
 - Vertical heterogeneity in test portion + critical penetration depth (e.g. PXRF)
 - Detection limits often not as low as for ex situ measurements
- However, MU can be estimated by duplicate method (or SPT)
 - Can judge whether Measurements are fit-for-purpose (FFP) if UfS quantified

University of Sussex

random compo	onent of UfS (Results)
TargetSIPbS2PbNumber 1005 1633 2 4631 3723 3 1415 2264 4 865 1350 5 2899 2216 6 721 1758 7 2122 1014 8 1321 1043 9 3348 3904 10 11543 5570 11 2904 2833 12 2617 2762 13 9076 14 6127 3874 15 331 576 16 12878 8948 17 3246 4332 19 1936 1989 21 4611 2880 21 4611 2880 21 4611 2880 22 3125 2713 23 1215 2713 24 2070 2305	ow quite large variation (from small scale heterogeneity) ast estimate of MU (U'_{meas}) = 55% Is much less susceptible to small proportion of outlying values (i.e. < 10%), the duplicates (e.g. Targets 10 & 18). of $U'_{analysis} = 3\%$. as <i>itu</i> PXRF measurements (made in lab on prepared versions of removed rgets), in fully balanced experimental design (i.e. with duplicated analyses) erformance of PXRF similar <i>in situ</i> to <i>ex situ</i> 54.9% = ($\sqrt{55^2 - 3^2}$), using $s_{sampling} = \sqrt{s_{meas}^2 - s_{analytical}^2}$ of MU ('analysis (as repeatability) has little effect on value of MU nstrument reports uncertainty (U') of around 3%, but gher at ~ 55 % - when UfS included tertainty Factor ${}^{F}U = 1.85$ ion (explained later)

	Estima r	ation made	of UfS e in situ	i (and Ml <u>i (Include</u>	J) for measu Analytical B	irements ias)
•	Systematic co – estimated b – unlike most	omponer by measure t test mater	nt of MU of <i>i</i> ments made on rials in real wor	<i>in situ</i> measurem matrix-matched CRI Id	ents from analytical bi Ms (e.g. NIST 2710), but	as (not sampling bias)
	CRM	Dried	Ground	Homogeneized	Compacted	
	Test material	Moist	Unground	Heterogeneous	Un-consolidated	
•	To overcome – made for sa Need to also being estimat – i.e. total Pb	this mis ame analyte match va ted b concentra	-match, <u>com</u> e on same samp alue of the 'r ation in dry soil	pare <i>in situ</i> again ling targets neasurand', whic	nst <i>ex situ</i> measuremer	ne value that is
•	In Case Study measurement	y, also re t made	emoved ex si	<i>tu</i> samples taken	at same locations as P	PXRF Sampling Target
	 Also with s for all 24 sa dry, disagre then analyse 	implified l ampling ta egate, sieve ed by ICP-	palanced design rgets, but 8 targ e (<2mm), grind AES (traceable	(i.e. without Analysi ets would be OK for and acid digestion is to CRMs)	s 2) routine investigation n a remote laboratory (i.e. <i>e</i>	x situ)
						US University of Sussex

	' B	ias'	of	in s	itι	PXRF against <i>ex situ</i> ICP-AES measurements
Target ID	Ex situ ICP-AES	SD I CP (35.8%)	In situ P-XRF	SD PXRF (27.5%)		16000 - 5 14000 -
A6	7340	2628	1319	363		
A5	8815	3156	4177	1149		
A4	1522	545	1840	506		
A3	1290	462	1108	305		
A2	9340	3344	2547	700	•	Systematic component of MU estimated as bias
A1	3080	1103	1240	341		by comparing systems to both the site DVDE manufacture
B6	4180	1496	1568	431		- by comparing average value of both in still PART measurements
B5	1926	690	1183	325		- against <i>ex sini</i> ICP-AES measurement
B4	3670	1314	3626	997	•	Relationship modelled as a function of concentration -
B3	6718	2405	8555	2353		
B2	5630	2016	2869	789		 Using FREML (Functional Relationship Estimation by Maximum likelihood [1, 2]
B1	3630	1300	2690	740	•	In FREML uncertainty of both variables properly taken into account.
C5	6880	2463	881	242		
C4	9370	3354	5002	1376		 Also possible to use ordinary least-squares regression, but this can only allow for uncertainty in
C3	1522	545	454	125		y-axis (e.g. PXRF) and ignores uncertainty for x-axis (e.g. ICP-AES)
C2	21877	7832	10919	3003		
D3	5230	1872	3788	1042		Model $(1) = h(1) \times \frac{Dh}{Dh} + h(0)$
D2	18784	6725	7556	2078		$W_{100} = \frac{[\Gamma U]_{in sint}}{[\Gamma U]_{in sint}} = U(1)^{-1} \frac{[\Gamma U]_{ex sint}}{[\Gamma U]_{ex sint}} = U(0)$
D1	2800	1002	1963	540		
E3	10584	3789	6050	1664		
E2	7316	2619	3745	1030	•	Slope coefficient of linear model $(b(1)) \rightarrow \underline{rotational}$ component of bias
E1	2235	800	1384	381		Intercent coefficient $h(0) \rightarrow \text{translational component}$
F3	3860	1382	1964	540	•	intercept coefficient $0(0) \rightarrow \underline{\text{uansiationar}}$ component 118 University
F2	5210	1865	2188	602		of Sussex
			•] [[1] AN 2] An No.10	C Software, downloaded gratis from: <u>https://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software/</u> alytical Methods Committee (2002) Fitting a linear functional relationship to data with error on both variables, Technical Brief Roval Society of Chemistry, London

Judging FFP using Optimized Uncertainty (OU) equation

E (L) = C [1-
$$\Phi$$
 (ϵ_1 / s_{meas})] + D/s²_{meas}

E (L) – expectation of financial loss (= Total Cost)

s_{meas} - measurement uncertainty

 $\Phi-\text{standard}$ normal cumulative distribution function

 $\epsilon 1 - error limit = |T - c|$

(T = threshold value, c = contaminant concentration at which to optimise)

D - combined optimal cost for sampling and analysis

C – consequence costs (e.g. potential losses resulting from misclassification)

Thompson M, Fearn T (1996) What exactly is fitness for purpose in analytical measurement? Analyst, 121, 275–278. Ramsey M.H., Taylor P. D. and Lee J.C. (2002) Optimized contaminated land investigation at minimum overall cost to achieve fitness-for-purpose, Journal of Environmental Monitoring, 4, 5, 809–814.

US University of Sussex

Item	Value	Units	U'	Also use individual cost (& MU) of
Sampling cost (each)	29	£		Sampling and Analysis
Analytical cost (each)	12	£		 to calculate which if more cost
Consequenct cost per location, for <u>false positive</u>	10000	£		effective to reduce overall MU
classification (i.e. unnecessary remediation)	•			For 30m grid spacing
U _{sampling}	784	mg kg ⁻¹	54.9%	
U analytical	43	mg kg ⁻¹	3% ┥	 From ANOVA + external u_{anal}
Umeasurement	786	mg kg ⁻¹	55%	
Threshold value of concentration	2000	mg kg ⁻¹		 UK limit at time of suvey
Concentration at which to optimise	2020	mg kg ⁻¹		

Alternative Purpose of in situ measurements?

- Geochemical mapping has a different FFP criterion
- Second FFP criterion that MU should not contribute > 20% of total variance [1]
- Target u_{meas} = 917 mg kg⁻¹ (= 20% of total variance = SQRT(0.2*2050²))
- Actual (robust estimate) $u_{meas} = 786 \text{ mg kg}^{-1}$ (ANOVA2 output)
- 786 < 917 mg kg⁻¹ indicates that measurement results (& therefore measurement procedure)

 are <u>fit for that purpose</u>
- Same conclusion FFP when Expressed In terms of relative uncertainty
- Actual robust MU of 55% < Target MU of 64%
- But 'Target' MU is more a preferred maximum value than a rigorous target
- i.e. Actual MU < Target MU is not a deficiency
- Even lower Actual MU beneficial as it would further improve reliability of geochemical map
- So in situ PXRF does give broadly reliable geochemical map of Pb for this site
- Can approximately locate location of Pb smelters

[1] UfS Guide, Section 16.2

US University

Conclusions

- In situ measurement method are useful, but have MU including UfS
- MU (inc UfS) can be estimated using the Duplicate Method
 - but systematic effects requires the use of an *ex situ* method for validation*
- Judging Fitness-for-Purpose (FFP) of in situ measurements
 - enabled Validation of measurement methods (including sampling)
 - Against whatever purpose is specified
 - Using a particular FFP criterion (e.g. either Optimal MU, or % of total variance)
- Case study in situ PXRF (for Pb at one particular site) proved to be:
 - FFP for Geochemical Mapping
 - But not FFP for Compliance with regulation (at relevant threshold)

*Ramsey M.H. (2020) Challenges for the estimation of uncertainty of measurements made *in situ*. Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement. 26(4), 183-192. 2020. https://doi.org/10.1007/s00769-020-01446-4