Eurachem approaches to measurement uncertainty evaluation from method validation data

Ricardo Bettencout da Silva

Centro de Química Estrutural Institute of Molecular Sciences Faculdade de Ciências da Universidade de Lisboa

Outline

Introductory information Uncertainty components affecting measurements Quantification, combination and expansion of the MU* Final remarks

* - measurement uncertainty

Precision uncertainty

If a single measurement is performed:

 $u_{\rm P} = s_{\rm I}$

If the result is the mean of *n* measurements performed in different days:

$$u_{\rm P}(n;{\rm dd})=s_{\rm I}/\sqrt{n}$$

If the result is the mean of *m* measurements performed in the same day:

$$u_{\mathrm{P}}(m;\mathrm{sd}) = \sqrt{s_{\mathrm{I}}^2 + s_{\mathrm{r}}^2 \left(\frac{1-n}{n}\right)}$$

 $u_{
m P}$ - precision standard uncertainty

Precision uncertainty

For measurements applicable to a wide concentration range, precision models should be defined:

• Typically, below $2c_{LOQ}$, s_I is approximately constant §

• Typically, above $2c_{LOQ}$, $s'_I = s_I/c$ is approximately constant (model is improved if additional intervals above $2c_{LOQ}$ are considered)

Interval I (c_{LOQ} to $2c_{LOQ}$): Constant $s_{I}\langle I \rangle$ Interval II ($2c_{LOQ}$ to $10c_{LOQ}$): Constant $s'_{I}\langle II \rangle$ Interval III ($10c_{LOQ}$ to c_{Max}): Constant $s'_{I}\langle III \rangle$

§ - Instead of 2, another multiplying factor can be used.

Preci	sion ur of total As in	ncertai	nty - E	xample = 0.05 mg kg
Sample	<i>c</i> (mg kg ⁻¹)	S _I (mg kg⁻¹)	<i>s</i> ′ ₁	n
Interval I: Below 20	CLOQ			
А	0.0510	0.0052	-	8
В	0.0880	0.0074	-	9
Model: $u_{ m P}=\sqrt{rac{0.00}{2}}$	52 ² (8-1)+0.0074 ² (9-1) (8-1)+(9-1)	$\frac{1}{2} = 0.00647 \text{ mg k}$	g ⁻¹	
Interval II: Above 2	c _{LOQ}			
С	0.120	-	5.3%	10
D	0.452	-	4.9%	11
Model: $u'_{\rm P} = \sqrt{\frac{5.3}{2}}$	$\frac{\%^2(10-1)+4.9^2(11-1)}{(10-1)+(11-1)}$:	= 5 . 09 %		

6

Recovery uncertainty

Uncertainty for the management of systematic effects.

- requires the analysis of samples with known concentration
- involves deciding if observed relevant systematic effects should be corrected on results:

Correct results for relevant recovery if mandatory or allowed
 Do not correct results if correction is not allowed

A Recovery uncertainty

Mean recovery uncertainty

Standard uncertainty, $u_{\overline{R}}$, of the overall mean recovery, \overline{R} , estimated from *N* mean recoveries, \overline{R}_i , determined from the analysis of *N* reference material in n_i different days:

$$u_{\overline{R}} = \sqrt{\sum_{i=1}^{N} \left(\frac{\overline{c}_{i}}{C_{i}}\right)^{2} \left[\left(\frac{s_{I}(c_{i})}{\overline{c}_{i}\sqrt{n_{i}}}\right)^{2} + \left(\frac{u(C_{i})}{C_{i}}\right)^{2} \right] / N}$$

 C_i and \overline{c}_i are the reference and mean of measured values ($\overline{R}_i = \overline{c}_i / C_i$).

<section-header><section-header><text>

Additional uncertainty

Relevant components not expressed in $u_{
m P}$ and $u_{\overline{
m R}}$:

Example:

Sampling uncertainty if an item larger than the laboratory sample is to be characterised.

Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches. Second Edition, Eurachem (2019).

C. Borges, et al., Optimization of river sampling: application to nutrients distribution in Tagus river estuary, Anal. Chem. 91 (2019) 5698-5705

17

Combination and expansion

Interval I [c_{LOQ} , $2c_{LOQ}$]:

$$U = 2 \sqrt{u_{\mathrm{P}}^2 \langle \mathrm{I}
angle + \left(c_{\square} \cdot u'_{\,\overline{R}}
ight)^2}$$

Interval II [$2c_{LOQ}, c_{Max}$]:

$$U=2c_{\Box}\sqrt{u'_{
m P}^2\langle {
m II}
angle+u'_{\overline{R}}^2}$$

where c_{\square} is c or c_c , and U the expanded uncertainty for 95% confidence level.

Final remarks

• Top-down uncertainty evaluations are popular for their simplicity, but frequently some simplifications hide relevant details.

• 24 years after introducing the MU concept in accredited laboratories, this concept is being used seriously in conformity assessments...therefore, we must be more careful in our MU evaluations.

A focus for analytical chemistry in Europe

Thanks for your attention

https://mechem.rd.ciencias.ulisboa.pt/